From 2fbdf974338bde8576efdae40a819a76b2391033 Mon Sep 17 00:00:00 2001 From: "Juan J. Martinez" Date: Sun, 5 Nov 2023 11:22:55 +0000 Subject: Initial import of the open source release --- tools/hex2bin-2.0/doc/S-record.txt | 361 +++++++++++++++++++++++++++++++++++++ 1 file changed, 361 insertions(+) create mode 100644 tools/hex2bin-2.0/doc/S-record.txt (limited to 'tools/hex2bin-2.0/doc/S-record.txt') diff --git a/tools/hex2bin-2.0/doc/S-record.txt b/tools/hex2bin-2.0/doc/S-record.txt new file mode 100644 index 0000000..ba4abc1 --- /dev/null +++ b/tools/hex2bin-2.0/doc/S-record.txt @@ -0,0 +1,361 @@ +S-Record Format + + A file in Motorola S-record format is an ASCII file. There are three different + formats: + + S19 for 16-bit address + S2 for 24-bit address + S3 for 32-bit address + + + The files consist of optional symbol table information, data specifications + for loading memory, and a terminator record. + + [ $$ {module_record} + symbol records + $$ [ module_record ] + symbol_records + $$] + header_record + data_records + record_count_record + terminator_record + + +Module Record (Optional) + + Each object file contains one record for each module that is a component of it. This + record contains the name of the module. There is one module record for each relocatable + object created by the assembler. The name of the relocatable object module + contained in the record comes from the IDNT directive. For absolute objects created + by the linker, there is one module record for each relocatable object file linked, + plus an additional record whose name comes from the NAME command for the + linker. + + Example: + + $$ MODNAME + + +Symbol Record (Optional) + + As many symbol records as needed can be contained in the object module. Up to 4 + symbols per line can be used, but it is not mandatory that each line contain 4 + symbols. A module can contain only symbol records. + + Example: + + APPLE $00000 LABEL1 $ODOC3 + MEM $OFFFF ZEEK $01947 + + The module name associated with the symbols can be specified in the + module_record preceding the symbol records. + + Example: + + $$MAIN + + Symbols are assumed to be in the module named in the preceding module_record + until another module is specified with another module_record. Symbols defined by + the linker's PUBLIC command appear following the first module record, which + indicates the name of the output object module specified by the linker's NAME + command. + + +***************************************************************************************** + +Header Record (SO) + + Each object module has exactly one header record with the following format: + + S00600004844521B + + Description: + + S0 Identifies the record as a header record + 06 The number of bytes following this one + 0000 The address field, which is ignored + 484452 The string HDR in ASCII + 1B The checksum + + + +***************************************************************************************** + +Data Record (S1) + + A data record specifies data bytes that are to be loaded into memory. Figure 1 + shows the format for such a record. The columns shown in the figure represent half + of a byte (4 bits). + + --------------------------------------------- + | 1 2 3 4 5 6 7 8 9 ... 40 41 42 | + | | + | S ID byte load data...data checksum | + | count address 1 n | + --------------------------------------------- + Figure 1: Data Record Formatter 16-Bit Load Address + + + Column Description + + 1 Contains the ASCII character S, which indicates the start of + a record in Motorola S-record format. + + 2 Contains the ASCII character identifying the record type. + For data records, this character is 1. + + 3 to 4 Contain the count of the number of bytes following this one + within the record. The count includes the checksum and the + load address bytes but not the byte count itself. + + 5 to 8 Contain the load address. The first data byte is to be loaded + into this address and subsequent bytes into the next sequential + address. Columns 5 and 6 contain the high-order address + byte, and columns 7 and 8 contain the low-order address byte. + + 9 to 40 Contain the specifications for up to 16 bytes of data. + + 41 to 42 Contain a checksum for the record. To calculate this, take the + sum of the values of all bytes from the byte count up to the + last data byte, inclusive, modulo 256. Subtract this result + from 255. + + +***************************************************************************************** + +Data Record (S2) + + + A data record specifies data bytes that are to be loaded into memory. Figure 2 + shows the format for such a record. The columns shown in the figure represent half + of a byte (4 bits). + + + ---------------------------------------------------- + | 1 2 3 4 5 6 7 8 9 10 11 ... 42 43 44 | + | | + | S ID byte load data...data checksum | + | count address 1 n | + ---------------------------------------------------- + Figure 2: Data Record Format for 24-Bit Load Address + + Column Description + + 1 Contains the ASCII character S, which indicates the start of + a record in Motorola S-record format. + + 2 Contains the ASCII character identifying the record type. + For data records, this character is 2. + + 3 to 4 Contain the count of the number of bytes following this one + within the record. The count includes the checksum and the + load address bytes but not the byte count itself. + + 5 to 10 Contain the load address. The first data byte is to be loaded + into this address and subsequent bytes into the next sequential + address. Columns 5 and 6 contain the high-order address + byte, and columns 9 and 10 contain the low-order address byte. + + 11 to 42 Contain the specifications for up to 16 bytes of data. + + 43 to 44 Contain a checksum for the record. To calculate this, take the + sum of the values of all bytes from the byte count up to the + last data byte, inclusive, modulo 256. Subtract this result + from 255. + + +***************************************************************************************** + +Data Record (S3) + + + A data record specifies data bytes that are to be loaded into memory. Figure 3 + shows the format for such a record. The columns shown in the figure represent half + of a byte (4 bits). + + ---------------------------------------------------------- + | 1 2 3 4 5 6 7 8 9 10 11 12 13 ... 44 45 46 | + | | + | S ID byte load data...data checksum | + | count address 1 n | + ---------------------------------------------------------- + Figure 3: Data Record Format for 32-Bit Load Address + + Column Description + + 1 Contains the ASCII character S, which indicates the start of + a record in Motorola S-record format. + + 2 Contains the ASCII character identifying the record type. + For data records, this digit is 3 for 32-bit addresses. + + 3 to 4 Contain the count of the number of bytes following this one + within the record. The count includes the checksum and the + load address bytes but not the byte count itself. + + 5 to 12 Contain the load address. The first data byte is to be loaded + into this address and subsequent bytes into the next sequential + address. Columns 5 and 6 contain the high-order address + byte, and columns 11 and 12 contain the low-order address byte. + + 13 to 44 Contain the specifications for up to 15 bytes of data. + + 45 to 46 Contain a checksum for the record. To calculate this, take the + sum of the values of all bytes from the byte count up to the + last data byte, inclusive, modulo 256. Subtract this result + from 255. + + +***************************************************************************************** + +Record Count Record (S5) + + + The record count record verifies the number of data records preceding it. Figure 4 + shows the format for such a record. The columns shown in the figure represent half + of a byte (4 bits). + + -------------------------------------- + | 1 2 3 4 5 6 7 8 9 10 | + | | + | S ID byte # of data checksum | + | count records | + -------------------------------------- + Figure 4: Record Count Record Format + + Column Description + + 1 Contains the ASCII character S, which indicates the start of + a record in Motorola S-record format. + + 2 Contains the ASCII character 5, which indicates a record + count record. + + 3 to 4 Contain the byte count, ASCII string 03. + + 5 to 8 Contain the number of data records in this file. The high- + order byte is in columns 5 and 6. + + 9 to 10 Contain the checksum for the record. + + Example: + + S503010DEE + + The example above shows a record count record indicating a total of 269 records + (0x010D) and a checksum of 0xEE. + + + +***************************************************************************************** + +Terminator Record for 32-bit address (S7) + + A terminator record specifies the end of the data records. Figure 5 shows the + format for such a record. The columns shown in the figure represent half of a byte + (4 bits). + + ------------------------------------- + | 1 2 3 4 5...12 13 14 | + | | + | S ID byte load checksum | + | count address | + ------------------------------------- + Figure5: Terminator Record Format for 32-Bit Load Address + + Column Description + + 1 Contains the ASCII character S, which indicates the start of + a record in Motorola S-record format. + + 2 Contains the ASCII character 7, which indicates a 32-bit + load address. + + 3 to 4 Contain the byte count, ASCII string 04. + + 5 to 12 Contain the load address that is either set to zero or to the + starting address specified in the END directive or START + command (there are no data bytes). + + 13 to 14 Contain the checksum for the record. + +***************************************************************************************** + +Terminator Record for 24-bit address (S8) + + + A terminator record specifies the end of the data records. Figure 6 shows the + format for such a record. The columns shown in the figure represent half of a byte + (4 bits). + + ---------------------------------------- + | 1 2 3 4 5 6 7 8 9 10 11 12 | + | | + | S ID byte load checksum | + | count address | + ---------------------------------------- + Figure 6: Terminator Record Format for 24-Bit Load Address + + Column Description + + 1 Contains the ASCII character S, which indicates the start of + a record in Motorola S-record format. + + 2 Contains the ASCII character 8, which indicates a 24-bit + load address. + + 3 to 4 Contain the byte count, ASCII string 04. + + 5 to 10 Contain the load address, which is either set to zero or to the + starting address specified in the END directive or START + command. There are no data bytes. + + 11 to 12 Contain the checksum for the record. + + Example: + + S804000AF0001 + + The previous example shows a terminator record with a 24-bit load address of + 0x000AF0 and a checksum of 0x01. + + +***************************************************************************************** + +Terminator Record for 16-bit address (S9) + + + A terminator record specifies the end of the data records. Figure 7 shows the + format for such a record. The columns shown in the figure represent half of a byte + (4 bits). + + ------------------------------------- + | 1 2 3 4 5 6 7 8 9 10 | + | | + | S ID byte load checksum | + | count address | + ------------------------------------- + Figure 7: Terminator Record Format for 16-Bit Load Address + + + Column Description + + 1 Contains the ASCII character S, which indicates the start of + a record in Motorola S-record format. + + 2 Contains the ASCII character 9, which indicates a 16-bit + load address. + + 3 to 4 Contain the byte count, ASCII string 04. + + 5 to 8 Contain the load address, which is either set to zero or to the + starting address specified in the END directive or START + command (there are no data bytes). + + 9 to 10 Contain the checksum for the record. + + + +***************************************************************************************** + hagen.v.tronje@on-line.de -- cgit v1.2.3