/* * expand.c - decompressor implementation * * Copyright (C) 2019 Emmanuel Marty * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgment in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ /* * Uses the libdivsufsort library Copyright (c) 2003-2008 Yuta Mori * * Inspired by cap by Sven-Åke Dahl. https://github.com/svendahl/cap * Also inspired by Charles Bloom's compression blog. http://cbloomrants.blogspot.com/ * With ideas from LZ4 by Yann Collet. https://github.com/lz4/lz4 * With help and support from spke * */ #include #include #include "format.h" #include "expand.h" #include "libapultra.h" #ifdef _MSC_VER #define FORCE_INLINE __forceinline #else /* _MSC_VER */ #define FORCE_INLINE __attribute__((always_inline)) #endif /* _MSC_VER */ static inline FORCE_INLINE int apultra_read_bit(const unsigned char **ppInBlock, const unsigned char *pDataEnd, int *nCurBitMask, unsigned char *bits, const int nBitBufferIdx) { const unsigned char *pInBlock = *ppInBlock; int nBit; if (nCurBitMask[nBitBufferIdx] == 0) { if (pInBlock >= pDataEnd) return -1; bits[nBitBufferIdx] = *pInBlock++; nCurBitMask[nBitBufferIdx] = 128; } nBit = (bits[nBitBufferIdx] & 128) ? 1 : 0; bits[nBitBufferIdx] <<= 1; nCurBitMask[nBitBufferIdx] >>= 1; *ppInBlock = pInBlock; return nBit; } static inline FORCE_INLINE int apultra_read_gamma2(const unsigned char **ppInBlock, const unsigned char *pDataEnd, int *nCurBitMask, unsigned char *bits, const int nBitBufferIdx) { int bit; unsigned int v = 1; if (nBitBufferIdx == 0) { /* Standard aPLib encoding. */ do { v = (v << 1) + apultra_read_bit(ppInBlock, pDataEnd, nCurBitMask, bits, nBitBufferIdx); bit = apultra_read_bit(ppInBlock, pDataEnd, nCurBitMask, bits, nBitBufferIdx); if (bit < 0) return bit; } while (bit); } else { /* Enhanced encoding for 8-bit microprocessors ... * 1) Write out values of 256 and higher lo-byte first (so the gamma2 decoder only needs to rotate a byte). * 2) Swap meaning of continue/stop bits (saves a byte on the 6502, with no effect on other platforms). */ int l = 0; do { if ((l == 0) && (v >= 256)) { l = v; v = 1; } v = (v << 1) + apultra_read_bit(ppInBlock, pDataEnd, nCurBitMask, bits, nBitBufferIdx); bit = apultra_read_bit(ppInBlock, pDataEnd, nCurBitMask, bits, nBitBufferIdx); if (bit < 0) return bit; } while (bit == 0); if (l != 0) { v = (v << 8) + (l & 255); } } return v; } /** * Get maximum decompressed size of compressed data * * @param pInputData compressed data * @param nInputSize compressed size in bytes * @param nFlags compression flags (a bitmask of APULTRA_FLAG_xxx, or 0) * * @return maximum decompressed size */ size_t apultra_get_max_decompressed_size(const unsigned char *pInputData, size_t nInputSize, const unsigned int nFlags) { const unsigned char *pInputDataEnd = pInputData + nInputSize; int nCurBitMask[3] = { 0, 0, 0 }; unsigned char bits[3] = { 0, 0, 0 }; int nMatchOffset = 1; int nFollowsLiteral = 1; size_t nDecompressedSize = 0; int nSingleBitBufferIdx = 0; int nGammaBitBufferIdx = (nFlags & APULTRA_FLAG_ENHANCED) ? 1 : 0; int nNibblesBitBufferIdx = (nFlags & APULTRA_FLAG_ENHANCED) ? 2 : 0; if (pInputData >= pInputDataEnd) return -1; pInputData++; nDecompressedSize++; while (1) { unsigned int nResult; nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nSingleBitBufferIdx); if (nResult < 0) return -1; if (!nResult) { /* '0': literal */ if (pInputData < pInputDataEnd) { pInputData++; nDecompressedSize++; nFollowsLiteral = 1; } else { return -1; } } else { nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nSingleBitBufferIdx); if (nResult < 0) return -1; if (nResult == 0) { unsigned int nMatchLen; unsigned int nMatchLenBias = 0; unsigned int nIsRepMatch = 0; /* '10': 8+n bits offset */ unsigned int nMatchOffsetHi = apultra_read_gamma2(&pInputData, pInputDataEnd, nCurBitMask, bits, nGammaBitBufferIdx); if (nFollowsLiteral == 0 || nMatchOffsetHi != 2) { if (nFollowsLiteral) nMatchOffset = (nMatchOffsetHi - 3) << 8; else nMatchOffset = (nMatchOffsetHi - 2) << 8; nMatchOffset |= (unsigned int)(*pInputData++); if (nMatchOffset < 128) nMatchLenBias = 2; } else { /* else rep-match */ nIsRepMatch = 1; } nFollowsLiteral = 0; nMatchLen = apultra_read_gamma2(&pInputData, pInputDataEnd, nCurBitMask, bits, nGammaBitBufferIdx); if (!nIsRepMatch) { if (nMatchOffset >= MINMATCH3_OFFSET) nMatchLen++; if (nMatchOffset >= MINMATCH4_OFFSET) nMatchLen++; } nMatchLen += nMatchLenBias; nDecompressedSize += nMatchLen; } else { nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nSingleBitBufferIdx); if (nResult < 0) return -1; if (nResult == 0) { unsigned int nCommand; unsigned int nMatchLen; /* '110': 7 bits offset + 1 bit length */ nCommand = (unsigned int)(*pInputData++); if (nCommand == 0x00) { /* EOD. No match len follows. */ break; } /* Bits 7-1: offset; bit 0: length */ nMatchOffset = (nCommand >> 1); nMatchLen = (nCommand & 1) + 2; nFollowsLiteral = 0; nDecompressedSize += nMatchLen; } else { unsigned int nShortMatchOffset; /* '111': 4 bit offset */ nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nNibblesBitBufferIdx); if (nResult < 0) return -1; nShortMatchOffset = nResult << 3; nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nNibblesBitBufferIdx); if (nResult < 0) return -1; nShortMatchOffset |= nResult << 2; nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nNibblesBitBufferIdx); if (nResult < 0) return -1; nShortMatchOffset |= nResult << 1; nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nNibblesBitBufferIdx); if (nResult < 0) return -1; nShortMatchOffset |= nResult << 0; nFollowsLiteral = 1; nDecompressedSize++; } } } } return nDecompressedSize; } /** * Decompress data in memory * * @param pInputData compressed data * @param pOutBuffer buffer for decompressed data * @param nInputSize compressed size in bytes * @param nMaxOutBufferSize maximum capacity of decompression buffer * @param nFlags compression flags (a bitmask of APULTRA_FLAG_xxx, or 0) * * @return actual decompressed size, or -1 for error */ size_t apultra_decompress(const unsigned char *pInputData, unsigned char *pOutData, size_t nInputSize, size_t nMaxOutBufferSize, const unsigned int nFlags) { const unsigned char *pInputDataEnd = pInputData + nInputSize; unsigned char *pCurOutData = pOutData; const unsigned char *pOutDataEnd = pCurOutData + nMaxOutBufferSize; const unsigned char *pOutDataFastEnd = pOutDataEnd - 20; int nCurBitMask[3] = { 0, 0, 0 }; unsigned char bits[3] = { 0, 0, 0 }; int nMatchOffset = 1; int nFollowsLiteral = 1; int nSingleBitBufferIdx = 0; int nGammaBitBufferIdx = (nFlags & APULTRA_FLAG_ENHANCED) ? 1 : 0; int nNibblesBitBufferIdx = (nFlags & APULTRA_FLAG_ENHANCED) ? 2 : 0; if (pInputData >= pInputDataEnd && pCurOutData < pOutDataEnd) return -1; *pCurOutData++ = *pInputData++; while (1) { unsigned int nResult; nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nSingleBitBufferIdx); if (nResult < 0) return -1; if (!nResult) { /* '0': literal */ if (pInputData < pInputDataEnd && pCurOutData < pOutDataEnd) { *pCurOutData++ = *pInputData++; nFollowsLiteral = 1; } else { return -1; } } else { nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nSingleBitBufferIdx); if (nResult < 0) return -1; if (nResult == 0) { unsigned int nMatchLen; unsigned int nMatchLenBias = 0; unsigned int nIsRepMatch = 0; /* '10': 8+n bits offset */ unsigned int nMatchOffsetHi = apultra_read_gamma2(&pInputData, pInputDataEnd, nCurBitMask, bits, nGammaBitBufferIdx); if (nFollowsLiteral == 0 || nMatchOffsetHi != 2) { if (nFollowsLiteral) nMatchOffset = (nMatchOffsetHi - 3) << 8; else nMatchOffset = (nMatchOffsetHi - 2) << 8; nMatchOffset |= (unsigned int)(*pInputData++); if (nMatchOffset < 128) nMatchLenBias = 2; } else { /* else rep-match */ nIsRepMatch = 1; } nFollowsLiteral = 0; const unsigned char *pSrc = pCurOutData - nMatchOffset; if (pSrc >= pOutData) { nMatchLen = apultra_read_gamma2(&pInputData, pInputDataEnd, nCurBitMask, bits, nGammaBitBufferIdx); if (!nIsRepMatch) { if (nMatchOffset >= MINMATCH3_OFFSET) nMatchLen++; if (nMatchOffset >= MINMATCH4_OFFSET) nMatchLen++; } nMatchLen += nMatchLenBias; if (nMatchLen < 11 && nMatchOffset >= 8 && pCurOutData < pOutDataFastEnd) { memcpy(pCurOutData, pSrc, 8); memcpy(pCurOutData + 8, pSrc + 8, 2); pCurOutData += nMatchLen; } else { if ((pCurOutData + nMatchLen) <= pOutDataEnd && (pSrc + nMatchLen) <= pOutDataEnd) { /* Do a deterministic, left to right byte copy instead of memcpy() so as to handle overlaps */ if (nMatchOffset >= 16 && (pCurOutData + nMatchLen) < (pOutDataFastEnd - 15)) { const unsigned char *pCopySrc = pSrc; unsigned char *pCopyDst = pCurOutData; const unsigned char *pCopyEndDst = pCurOutData + nMatchLen; do { memcpy(pCopyDst, pCopySrc, 16); pCopySrc += 16; pCopyDst += 16; } while (pCopyDst < pCopyEndDst); pCurOutData += nMatchLen; } else { while (nMatchLen) { *pCurOutData++ = *pSrc++; nMatchLen--; } } } else { return -1; } } } else { return -1; } } else { nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nSingleBitBufferIdx); if (nResult < 0) return -1; if (nResult == 0) { unsigned int nCommand; unsigned int nMatchLen; /* '110': 7 bits offset + 1 bit length */ nCommand = (unsigned int)(*pInputData++); if (nCommand == 0x00) { /* EOD. No match len follows. */ break; } /* Bits 7-1: offset; bit 0: length */ nMatchOffset = (nCommand >> 1); nMatchLen = (nCommand & 1) + 2; nFollowsLiteral = 0; const unsigned char *pSrc = pCurOutData - nMatchOffset; if (pSrc >= pOutData && (pSrc + nMatchLen) <= pOutDataEnd) { if (nMatchOffset >= 8 && pCurOutData < pOutDataFastEnd) { memcpy(pCurOutData, pSrc, 8); memcpy(pCurOutData + 8, pSrc + 8, 2); pCurOutData += nMatchLen; } else { if ((pCurOutData + nMatchLen) <= pOutDataEnd) { while (nMatchLen) { *pCurOutData++ = *pSrc++; nMatchLen--; } } else { return -1; } } } else { return -1; } } else { unsigned int nShortMatchOffset; /* '111': 4 bit offset */ nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nNibblesBitBufferIdx); if (nResult < 0) return -1; nShortMatchOffset = nResult << 3; nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nNibblesBitBufferIdx); if (nResult < 0) return -1; nShortMatchOffset |= nResult << 2; nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nNibblesBitBufferIdx); if (nResult < 0) return -1; nShortMatchOffset |= nResult << 1; nResult = apultra_read_bit(&pInputData, pInputDataEnd, nCurBitMask, bits, nNibblesBitBufferIdx); if (nResult < 0) return -1; nShortMatchOffset |= nResult << 0; nFollowsLiteral = 1; if (nShortMatchOffset) { /* Short offset, 1-15 */ const unsigned char *pSrc = pCurOutData - nShortMatchOffset; if (pSrc >= pOutData && (pCurOutData + 1) <= pOutDataEnd && (pSrc + 1) <= pOutDataEnd) { *pCurOutData++ = *pSrc++; } else { return -1; } } else { /* Write zero */ if ((pCurOutData + 1) <= pOutDataEnd) { *pCurOutData++ = 0; } else { return -1; } } } } } } return (size_t)(pCurOutData - pOutData); }