/* Nuked OPL3
* Copyright (C) 2013-2020 Nuke.YKT
*
* This file is part of Nuked OPL3.
*
* Nuked OPL3 is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation, either version 2.1
* of the License, or (at your option) any later version.
*
* Nuked OPL3 is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Nuked OPL3. If not, see .
* Nuked OPL3 emulator.
* Thanks:
* MAME Development Team(Jarek Burczynski, Tatsuyuki Satoh):
* Feedback and Rhythm part calculation information.
* forums.submarine.org.uk(carbon14, opl3):
* Tremolo and phase generator calculation information.
* OPLx decapsulated(Matthew Gambrell, Olli Niemitalo):
* OPL2 ROMs.
* siliconpr0n.org(John McMaster, digshadow):
* YMF262 and VRC VII decaps and die shots.
*
* version: 1.8
*/
#include
#include
#include
#include "opl3.h"
#if OPL_ENABLE_STEREOEXT && !defined OPL_SIN
#ifndef _USE_MATH_DEFINES
#define _USE_MATH_DEFINES 1
#endif
#include
/* input: [0, 256), output: [0, 65536] */
#define OPL_SIN(x) ((int32_t)(sin((x) * M_PI / 512.0) * 65536.0))
#endif
/* Quirk: Some FM channels are output one sample later on the left side than the right. */
#ifndef OPL_QUIRK_CHANNELSAMPLEDELAY
#define OPL_QUIRK_CHANNELSAMPLEDELAY (!OPL_ENABLE_STEREOEXT)
#endif
#define RSM_FRAC 10
/* Channel types */
enum {
ch_2op = 0,
ch_4op = 1,
ch_4op2 = 2,
ch_drum = 3
};
/* Envelope key types */
enum {
egk_norm = 0x01,
egk_drum = 0x02
};
/*
logsin table
*/
static const uint16_t logsinrom[256] = {
0x859, 0x6c3, 0x607, 0x58b, 0x52e, 0x4e4, 0x4a6, 0x471,
0x443, 0x41a, 0x3f5, 0x3d3, 0x3b5, 0x398, 0x37e, 0x365,
0x34e, 0x339, 0x324, 0x311, 0x2ff, 0x2ed, 0x2dc, 0x2cd,
0x2bd, 0x2af, 0x2a0, 0x293, 0x286, 0x279, 0x26d, 0x261,
0x256, 0x24b, 0x240, 0x236, 0x22c, 0x222, 0x218, 0x20f,
0x206, 0x1fd, 0x1f5, 0x1ec, 0x1e4, 0x1dc, 0x1d4, 0x1cd,
0x1c5, 0x1be, 0x1b7, 0x1b0, 0x1a9, 0x1a2, 0x19b, 0x195,
0x18f, 0x188, 0x182, 0x17c, 0x177, 0x171, 0x16b, 0x166,
0x160, 0x15b, 0x155, 0x150, 0x14b, 0x146, 0x141, 0x13c,
0x137, 0x133, 0x12e, 0x129, 0x125, 0x121, 0x11c, 0x118,
0x114, 0x10f, 0x10b, 0x107, 0x103, 0x0ff, 0x0fb, 0x0f8,
0x0f4, 0x0f0, 0x0ec, 0x0e9, 0x0e5, 0x0e2, 0x0de, 0x0db,
0x0d7, 0x0d4, 0x0d1, 0x0cd, 0x0ca, 0x0c7, 0x0c4, 0x0c1,
0x0be, 0x0bb, 0x0b8, 0x0b5, 0x0b2, 0x0af, 0x0ac, 0x0a9,
0x0a7, 0x0a4, 0x0a1, 0x09f, 0x09c, 0x099, 0x097, 0x094,
0x092, 0x08f, 0x08d, 0x08a, 0x088, 0x086, 0x083, 0x081,
0x07f, 0x07d, 0x07a, 0x078, 0x076, 0x074, 0x072, 0x070,
0x06e, 0x06c, 0x06a, 0x068, 0x066, 0x064, 0x062, 0x060,
0x05e, 0x05c, 0x05b, 0x059, 0x057, 0x055, 0x053, 0x052,
0x050, 0x04e, 0x04d, 0x04b, 0x04a, 0x048, 0x046, 0x045,
0x043, 0x042, 0x040, 0x03f, 0x03e, 0x03c, 0x03b, 0x039,
0x038, 0x037, 0x035, 0x034, 0x033, 0x031, 0x030, 0x02f,
0x02e, 0x02d, 0x02b, 0x02a, 0x029, 0x028, 0x027, 0x026,
0x025, 0x024, 0x023, 0x022, 0x021, 0x020, 0x01f, 0x01e,
0x01d, 0x01c, 0x01b, 0x01a, 0x019, 0x018, 0x017, 0x017,
0x016, 0x015, 0x014, 0x014, 0x013, 0x012, 0x011, 0x011,
0x010, 0x00f, 0x00f, 0x00e, 0x00d, 0x00d, 0x00c, 0x00c,
0x00b, 0x00a, 0x00a, 0x009, 0x009, 0x008, 0x008, 0x007,
0x007, 0x007, 0x006, 0x006, 0x005, 0x005, 0x005, 0x004,
0x004, 0x004, 0x003, 0x003, 0x003, 0x002, 0x002, 0x002,
0x002, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001, 0x001,
0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000, 0x000
};
/*
exp table
*/
static const uint16_t exprom[256] = {
0x7fa, 0x7f5, 0x7ef, 0x7ea, 0x7e4, 0x7df, 0x7da, 0x7d4,
0x7cf, 0x7c9, 0x7c4, 0x7bf, 0x7b9, 0x7b4, 0x7ae, 0x7a9,
0x7a4, 0x79f, 0x799, 0x794, 0x78f, 0x78a, 0x784, 0x77f,
0x77a, 0x775, 0x770, 0x76a, 0x765, 0x760, 0x75b, 0x756,
0x751, 0x74c, 0x747, 0x742, 0x73d, 0x738, 0x733, 0x72e,
0x729, 0x724, 0x71f, 0x71a, 0x715, 0x710, 0x70b, 0x706,
0x702, 0x6fd, 0x6f8, 0x6f3, 0x6ee, 0x6e9, 0x6e5, 0x6e0,
0x6db, 0x6d6, 0x6d2, 0x6cd, 0x6c8, 0x6c4, 0x6bf, 0x6ba,
0x6b5, 0x6b1, 0x6ac, 0x6a8, 0x6a3, 0x69e, 0x69a, 0x695,
0x691, 0x68c, 0x688, 0x683, 0x67f, 0x67a, 0x676, 0x671,
0x66d, 0x668, 0x664, 0x65f, 0x65b, 0x657, 0x652, 0x64e,
0x649, 0x645, 0x641, 0x63c, 0x638, 0x634, 0x630, 0x62b,
0x627, 0x623, 0x61e, 0x61a, 0x616, 0x612, 0x60e, 0x609,
0x605, 0x601, 0x5fd, 0x5f9, 0x5f5, 0x5f0, 0x5ec, 0x5e8,
0x5e4, 0x5e0, 0x5dc, 0x5d8, 0x5d4, 0x5d0, 0x5cc, 0x5c8,
0x5c4, 0x5c0, 0x5bc, 0x5b8, 0x5b4, 0x5b0, 0x5ac, 0x5a8,
0x5a4, 0x5a0, 0x59c, 0x599, 0x595, 0x591, 0x58d, 0x589,
0x585, 0x581, 0x57e, 0x57a, 0x576, 0x572, 0x56f, 0x56b,
0x567, 0x563, 0x560, 0x55c, 0x558, 0x554, 0x551, 0x54d,
0x549, 0x546, 0x542, 0x53e, 0x53b, 0x537, 0x534, 0x530,
0x52c, 0x529, 0x525, 0x522, 0x51e, 0x51b, 0x517, 0x514,
0x510, 0x50c, 0x509, 0x506, 0x502, 0x4ff, 0x4fb, 0x4f8,
0x4f4, 0x4f1, 0x4ed, 0x4ea, 0x4e7, 0x4e3, 0x4e0, 0x4dc,
0x4d9, 0x4d6, 0x4d2, 0x4cf, 0x4cc, 0x4c8, 0x4c5, 0x4c2,
0x4be, 0x4bb, 0x4b8, 0x4b5, 0x4b1, 0x4ae, 0x4ab, 0x4a8,
0x4a4, 0x4a1, 0x49e, 0x49b, 0x498, 0x494, 0x491, 0x48e,
0x48b, 0x488, 0x485, 0x482, 0x47e, 0x47b, 0x478, 0x475,
0x472, 0x46f, 0x46c, 0x469, 0x466, 0x463, 0x460, 0x45d,
0x45a, 0x457, 0x454, 0x451, 0x44e, 0x44b, 0x448, 0x445,
0x442, 0x43f, 0x43c, 0x439, 0x436, 0x433, 0x430, 0x42d,
0x42a, 0x428, 0x425, 0x422, 0x41f, 0x41c, 0x419, 0x416,
0x414, 0x411, 0x40e, 0x40b, 0x408, 0x406, 0x403, 0x400
};
/*
freq mult table multiplied by 2
1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 12, 12, 15, 15
*/
static const uint8_t mt[16] = {
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 20, 24, 24, 30, 30
};
/*
ksl table
*/
static const uint8_t kslrom[16] = {
0, 32, 40, 45, 48, 51, 53, 55, 56, 58, 59, 60, 61, 62, 63, 64
};
static const uint8_t kslshift[4] = {
8, 1, 2, 0
};
/*
envelope generator constants
*/
static const uint8_t eg_incstep[4][4] = {
{ 0, 0, 0, 0 },
{ 1, 0, 0, 0 },
{ 1, 0, 1, 0 },
{ 1, 1, 1, 0 }
};
/*
address decoding
*/
static const int8_t ad_slot[0x20] = {
0, 1, 2, 3, 4, 5, -1, -1, 6, 7, 8, 9, 10, 11, -1, -1,
12, 13, 14, 15, 16, 17, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1
};
static const uint8_t ch_slot[18] = {
0, 1, 2, 6, 7, 8, 12, 13, 14, 18, 19, 20, 24, 25, 26, 30, 31, 32
};
#if OPL_ENABLE_STEREOEXT
/*
stereo extension panning table
*/
static int32_t panpot_lut[256];
static uint8_t panpot_lut_build = 0;
#endif
/*
Envelope generator
*/
typedef int16_t(*envelope_sinfunc)(uint16_t phase, uint16_t envelope);
typedef void(*envelope_genfunc)(opl3_slot *slott);
static int16_t OPL3_EnvelopeCalcExp(uint32_t level)
{
if (level > 0x1fff)
{
level = 0x1fff;
}
return (exprom[level & 0xff] << 1) >> (level >> 8);
}
static int16_t OPL3_EnvelopeCalcSin0(uint16_t phase, uint16_t envelope)
{
uint16_t out = 0;
uint16_t neg = 0;
phase &= 0x3ff;
if (phase & 0x200)
{
neg = 0xffff;
}
if (phase & 0x100)
{
out = logsinrom[(phase & 0xff) ^ 0xff];
}
else
{
out = logsinrom[phase & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg;
}
static int16_t OPL3_EnvelopeCalcSin1(uint16_t phase, uint16_t envelope)
{
uint16_t out = 0;
phase &= 0x3ff;
if (phase & 0x200)
{
out = 0x1000;
}
else if (phase & 0x100)
{
out = logsinrom[(phase & 0xff) ^ 0xff];
}
else
{
out = logsinrom[phase & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3));
}
static int16_t OPL3_EnvelopeCalcSin2(uint16_t phase, uint16_t envelope)
{
uint16_t out = 0;
phase &= 0x3ff;
if (phase & 0x100)
{
out = logsinrom[(phase & 0xff) ^ 0xff];
}
else
{
out = logsinrom[phase & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3));
}
static int16_t OPL3_EnvelopeCalcSin3(uint16_t phase, uint16_t envelope)
{
uint16_t out = 0;
phase &= 0x3ff;
if (phase & 0x100)
{
out = 0x1000;
}
else
{
out = logsinrom[phase & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3));
}
static int16_t OPL3_EnvelopeCalcSin4(uint16_t phase, uint16_t envelope)
{
uint16_t out = 0;
uint16_t neg = 0;
phase &= 0x3ff;
if ((phase & 0x300) == 0x100)
{
neg = 0xffff;
}
if (phase & 0x200)
{
out = 0x1000;
}
else if (phase & 0x80)
{
out = logsinrom[((phase ^ 0xff) << 1) & 0xff];
}
else
{
out = logsinrom[(phase << 1) & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg;
}
static int16_t OPL3_EnvelopeCalcSin5(uint16_t phase, uint16_t envelope)
{
uint16_t out = 0;
phase &= 0x3ff;
if (phase & 0x200)
{
out = 0x1000;
}
else if (phase & 0x80)
{
out = logsinrom[((phase ^ 0xff) << 1) & 0xff];
}
else
{
out = logsinrom[(phase << 1) & 0xff];
}
return OPL3_EnvelopeCalcExp(out + (envelope << 3));
}
static int16_t OPL3_EnvelopeCalcSin6(uint16_t phase, uint16_t envelope)
{
uint16_t neg = 0;
phase &= 0x3ff;
if (phase & 0x200)
{
neg = 0xffff;
}
return OPL3_EnvelopeCalcExp(envelope << 3) ^ neg;
}
static int16_t OPL3_EnvelopeCalcSin7(uint16_t phase, uint16_t envelope)
{
uint16_t out = 0;
uint16_t neg = 0;
phase &= 0x3ff;
if (phase & 0x200)
{
neg = 0xffff;
phase = (phase & 0x1ff) ^ 0x1ff;
}
out = phase << 3;
return OPL3_EnvelopeCalcExp(out + (envelope << 3)) ^ neg;
}
static const envelope_sinfunc envelope_sin[8] = {
OPL3_EnvelopeCalcSin0,
OPL3_EnvelopeCalcSin1,
OPL3_EnvelopeCalcSin2,
OPL3_EnvelopeCalcSin3,
OPL3_EnvelopeCalcSin4,
OPL3_EnvelopeCalcSin5,
OPL3_EnvelopeCalcSin6,
OPL3_EnvelopeCalcSin7
};
enum envelope_gen_num
{
envelope_gen_num_attack = 0,
envelope_gen_num_decay = 1,
envelope_gen_num_sustain = 2,
envelope_gen_num_release = 3
};
static void OPL3_EnvelopeUpdateKSL(opl3_slot *slot)
{
int16_t ksl = (kslrom[slot->channel->f_num >> 6] << 2)
- ((0x08 - slot->channel->block) << 5);
if (ksl < 0)
{
ksl = 0;
}
slot->eg_ksl = (uint8_t)ksl;
}
static void OPL3_EnvelopeCalc(opl3_slot *slot)
{
uint8_t nonzero;
uint8_t rate;
uint8_t rate_hi;
uint8_t rate_lo;
uint8_t reg_rate = 0;
uint8_t ks;
uint8_t eg_shift, shift;
uint16_t eg_rout;
int16_t eg_inc;
uint8_t eg_off;
uint8_t reset = 0;
slot->eg_out = slot->eg_rout + (slot->reg_tl << 2)
+ (slot->eg_ksl >> kslshift[slot->reg_ksl]) + *slot->trem;
if (slot->key && slot->eg_gen == envelope_gen_num_release)
{
reset = 1;
reg_rate = slot->reg_ar;
}
else
{
switch (slot->eg_gen)
{
case envelope_gen_num_attack:
reg_rate = slot->reg_ar;
break;
case envelope_gen_num_decay:
reg_rate = slot->reg_dr;
break;
case envelope_gen_num_sustain:
if (!slot->reg_type)
{
reg_rate = slot->reg_rr;
}
break;
case envelope_gen_num_release:
reg_rate = slot->reg_rr;
break;
}
}
slot->pg_reset = reset;
ks = slot->channel->ksv >> ((slot->reg_ksr ^ 1) << 1);
nonzero = (reg_rate != 0);
rate = ks + (reg_rate << 2);
rate_hi = rate >> 2;
rate_lo = rate & 0x03;
if (rate_hi & 0x10)
{
rate_hi = 0x0f;
}
eg_shift = rate_hi + slot->chip->eg_add;
shift = 0;
if (nonzero)
{
if (rate_hi < 12)
{
if (slot->chip->eg_state)
{
switch (eg_shift)
{
case 12:
shift = 1;
break;
case 13:
shift = (rate_lo >> 1) & 0x01;
break;
case 14:
shift = rate_lo & 0x01;
break;
default:
break;
}
}
}
else
{
shift = (rate_hi & 0x03) + eg_incstep[rate_lo][slot->chip->timer & 0x03];
if (shift & 0x04)
{
shift = 0x03;
}
if (!shift)
{
shift = slot->chip->eg_state;
}
}
}
eg_rout = slot->eg_rout;
eg_inc = 0;
eg_off = 0;
/* Instant attack */
if (reset && rate_hi == 0x0f)
{
eg_rout = 0x00;
}
/* Envelope off */
if ((slot->eg_rout & 0x1f8) == 0x1f8)
{
eg_off = 1;
}
if (slot->eg_gen != envelope_gen_num_attack && !reset && eg_off)
{
eg_rout = 0x1ff;
}
switch (slot->eg_gen)
{
case envelope_gen_num_attack:
if (!slot->eg_rout)
{
slot->eg_gen = envelope_gen_num_decay;
}
else if (slot->key && shift > 0 && rate_hi != 0x0f)
{
eg_inc = ~slot->eg_rout >> (4 - shift);
}
break;
case envelope_gen_num_decay:
if ((slot->eg_rout >> 4) == slot->reg_sl)
{
slot->eg_gen = envelope_gen_num_sustain;
}
else if (!eg_off && !reset && shift > 0)
{
eg_inc = 1 << (shift - 1);
}
break;
case envelope_gen_num_sustain:
case envelope_gen_num_release:
if (!eg_off && !reset && shift > 0)
{
eg_inc = 1 << (shift - 1);
}
break;
}
slot->eg_rout = (eg_rout + eg_inc) & 0x1ff;
/* Key off */
if (reset)
{
slot->eg_gen = envelope_gen_num_attack;
}
if (!slot->key)
{
slot->eg_gen = envelope_gen_num_release;
}
}
static void OPL3_EnvelopeKeyOn(opl3_slot *slot, uint8_t type)
{
slot->key |= type;
}
static void OPL3_EnvelopeKeyOff(opl3_slot *slot, uint8_t type)
{
slot->key &= ~type;
}
/*
Phase Generator
*/
static void OPL3_PhaseGenerate(opl3_slot *slot)
{
opl3_chip *chip;
uint16_t f_num;
uint32_t basefreq;
uint8_t rm_xor, n_bit;
uint32_t noise;
uint16_t phase;
chip = slot->chip;
f_num = slot->channel->f_num;
if (slot->reg_vib)
{
int8_t range;
uint8_t vibpos;
range = (f_num >> 7) & 7;
vibpos = slot->chip->vibpos;
if (!(vibpos & 3))
{
range = 0;
}
else if (vibpos & 1)
{
range >>= 1;
}
range >>= slot->chip->vibshift;
if (vibpos & 4)
{
range = -range;
}
f_num += range;
}
basefreq = (f_num << slot->channel->block) >> 1;
phase = (uint16_t)(slot->pg_phase >> 9);
if (slot->pg_reset)
{
slot->pg_phase = 0;
}
slot->pg_phase += (basefreq * mt[slot->reg_mult]) >> 1;
/* Rhythm mode */
noise = chip->noise;
slot->pg_phase_out = phase;
if (slot->slot_num == 13) /* hh */
{
chip->rm_hh_bit2 = (phase >> 2) & 1;
chip->rm_hh_bit3 = (phase >> 3) & 1;
chip->rm_hh_bit7 = (phase >> 7) & 1;
chip->rm_hh_bit8 = (phase >> 8) & 1;
}
if (slot->slot_num == 17 && (chip->rhy & 0x20)) /* tc */
{
chip->rm_tc_bit3 = (phase >> 3) & 1;
chip->rm_tc_bit5 = (phase >> 5) & 1;
}
if (chip->rhy & 0x20)
{
rm_xor = (chip->rm_hh_bit2 ^ chip->rm_hh_bit7)
| (chip->rm_hh_bit3 ^ chip->rm_tc_bit5)
| (chip->rm_tc_bit3 ^ chip->rm_tc_bit5);
switch (slot->slot_num)
{
case 13: /* hh */
slot->pg_phase_out = rm_xor << 9;
if (rm_xor ^ (noise & 1))
{
slot->pg_phase_out |= 0xd0;
}
else
{
slot->pg_phase_out |= 0x34;
}
break;
case 16: /* sd */
slot->pg_phase_out = (chip->rm_hh_bit8 << 9)
| ((chip->rm_hh_bit8 ^ (noise & 1)) << 8);
break;
case 17: /* tc */
slot->pg_phase_out = (rm_xor << 9) | 0x80;
break;
default:
break;
}
}
n_bit = ((noise >> 14) ^ noise) & 0x01;
chip->noise = (noise >> 1) | (n_bit << 22);
}
/*
Slot
*/
static void OPL3_SlotWrite20(opl3_slot *slot, uint8_t data)
{
if ((data >> 7) & 0x01)
{
slot->trem = &slot->chip->tremolo;
}
else
{
slot->trem = (uint8_t*)&slot->chip->zeromod;
}
slot->reg_vib = (data >> 6) & 0x01;
slot->reg_type = (data >> 5) & 0x01;
slot->reg_ksr = (data >> 4) & 0x01;
slot->reg_mult = data & 0x0f;
}
static void OPL3_SlotWrite40(opl3_slot *slot, uint8_t data)
{
slot->reg_ksl = (data >> 6) & 0x03;
slot->reg_tl = data & 0x3f;
OPL3_EnvelopeUpdateKSL(slot);
}
static void OPL3_SlotWrite60(opl3_slot *slot, uint8_t data)
{
slot->reg_ar = (data >> 4) & 0x0f;
slot->reg_dr = data & 0x0f;
}
static void OPL3_SlotWrite80(opl3_slot *slot, uint8_t data)
{
slot->reg_sl = (data >> 4) & 0x0f;
if (slot->reg_sl == 0x0f)
{
slot->reg_sl = 0x1f;
}
slot->reg_rr = data & 0x0f;
}
static void OPL3_SlotWriteE0(opl3_slot *slot, uint8_t data)
{
slot->reg_wf = data & 0x07;
if (slot->chip->newm == 0x00)
{
slot->reg_wf &= 0x03;
}
}
static void OPL3_SlotGenerate(opl3_slot *slot)
{
slot->out = envelope_sin[slot->reg_wf](slot->pg_phase_out + *slot->mod, slot->eg_out);
}
static void OPL3_SlotCalcFB(opl3_slot *slot)
{
if (slot->channel->fb != 0x00)
{
slot->fbmod = (slot->prout + slot->out) >> (0x09 - slot->channel->fb);
}
else
{
slot->fbmod = 0;
}
slot->prout = slot->out;
}
/*
Channel
*/
static void OPL3_ChannelSetupAlg(opl3_channel *channel);
static void OPL3_ChannelUpdateRhythm(opl3_chip *chip, uint8_t data)
{
opl3_channel *channel6;
opl3_channel *channel7;
opl3_channel *channel8;
uint8_t chnum;
chip->rhy = data & 0x3f;
if (chip->rhy & 0x20)
{
channel6 = &chip->channel[6];
channel7 = &chip->channel[7];
channel8 = &chip->channel[8];
channel6->out[0] = &channel6->slots[1]->out;
channel6->out[1] = &channel6->slots[1]->out;
channel6->out[2] = &chip->zeromod;
channel6->out[3] = &chip->zeromod;
channel7->out[0] = &channel7->slots[0]->out;
channel7->out[1] = &channel7->slots[0]->out;
channel7->out[2] = &channel7->slots[1]->out;
channel7->out[3] = &channel7->slots[1]->out;
channel8->out[0] = &channel8->slots[0]->out;
channel8->out[1] = &channel8->slots[0]->out;
channel8->out[2] = &channel8->slots[1]->out;
channel8->out[3] = &channel8->slots[1]->out;
for (chnum = 6; chnum < 9; chnum++)
{
chip->channel[chnum].chtype = ch_drum;
}
OPL3_ChannelSetupAlg(channel6);
OPL3_ChannelSetupAlg(channel7);
OPL3_ChannelSetupAlg(channel8);
/* hh */
if (chip->rhy & 0x01)
{
OPL3_EnvelopeKeyOn(channel7->slots[0], egk_drum);
}
else
{
OPL3_EnvelopeKeyOff(channel7->slots[0], egk_drum);
}
/* tc */
if (chip->rhy & 0x02)
{
OPL3_EnvelopeKeyOn(channel8->slots[1], egk_drum);
}
else
{
OPL3_EnvelopeKeyOff(channel8->slots[1], egk_drum);
}
/* tom */
if (chip->rhy & 0x04)
{
OPL3_EnvelopeKeyOn(channel8->slots[0], egk_drum);
}
else
{
OPL3_EnvelopeKeyOff(channel8->slots[0], egk_drum);
}
/* sd */
if (chip->rhy & 0x08)
{
OPL3_EnvelopeKeyOn(channel7->slots[1], egk_drum);
}
else
{
OPL3_EnvelopeKeyOff(channel7->slots[1], egk_drum);
}
/* bd */
if (chip->rhy & 0x10)
{
OPL3_EnvelopeKeyOn(channel6->slots[0], egk_drum);
OPL3_EnvelopeKeyOn(channel6->slots[1], egk_drum);
}
else
{
OPL3_EnvelopeKeyOff(channel6->slots[0], egk_drum);
OPL3_EnvelopeKeyOff(channel6->slots[1], egk_drum);
}
}
else
{
for (chnum = 6; chnum < 9; chnum++)
{
chip->channel[chnum].chtype = ch_2op;
OPL3_ChannelSetupAlg(&chip->channel[chnum]);
OPL3_EnvelopeKeyOff(chip->channel[chnum].slots[0], egk_drum);
OPL3_EnvelopeKeyOff(chip->channel[chnum].slots[1], egk_drum);
}
}
}
static void OPL3_ChannelWriteA0(opl3_channel *channel, uint8_t data)
{
if (channel->chip->newm && channel->chtype == ch_4op2)
{
return;
}
channel->f_num = (channel->f_num & 0x300) | data;
channel->ksv = (channel->block << 1)
| ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01);
OPL3_EnvelopeUpdateKSL(channel->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->slots[1]);
if (channel->chip->newm && channel->chtype == ch_4op)
{
channel->pair->f_num = channel->f_num;
channel->pair->ksv = channel->ksv;
OPL3_EnvelopeUpdateKSL(channel->pair->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->pair->slots[1]);
}
}
static void OPL3_ChannelWriteB0(opl3_channel *channel, uint8_t data)
{
if (channel->chip->newm && channel->chtype == ch_4op2)
{
return;
}
channel->f_num = (channel->f_num & 0xff) | ((data & 0x03) << 8);
channel->block = (data >> 2) & 0x07;
channel->ksv = (channel->block << 1)
| ((channel->f_num >> (0x09 - channel->chip->nts)) & 0x01);
OPL3_EnvelopeUpdateKSL(channel->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->slots[1]);
if (channel->chip->newm && channel->chtype == ch_4op)
{
channel->pair->f_num = channel->f_num;
channel->pair->block = channel->block;
channel->pair->ksv = channel->ksv;
OPL3_EnvelopeUpdateKSL(channel->pair->slots[0]);
OPL3_EnvelopeUpdateKSL(channel->pair->slots[1]);
}
}
static void OPL3_ChannelSetupAlg(opl3_channel *channel)
{
if (channel->chtype == ch_drum)
{
if (channel->ch_num == 7 || channel->ch_num == 8)
{
channel->slots[0]->mod = &channel->chip->zeromod;
channel->slots[1]->mod = &channel->chip->zeromod;
return;
}
switch (channel->alg & 0x01)
{
case 0x00:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->slots[0]->out;
break;
case 0x01:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->chip->zeromod;
break;
}
return;
}
if (channel->alg & 0x08)
{
return;
}
if (channel->alg & 0x04)
{
channel->pair->out[0] = &channel->chip->zeromod;
channel->pair->out[1] = &channel->chip->zeromod;
channel->pair->out[2] = &channel->chip->zeromod;
channel->pair->out[3] = &channel->chip->zeromod;
switch (channel->alg & 0x03)
{
case 0x00:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->pair->slots[0]->out;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->slots[1]->out;
channel->out[1] = &channel->chip->zeromod;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x01:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->pair->slots[0]->out;
channel->slots[0]->mod = &channel->chip->zeromod;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->pair->slots[1]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x02:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->chip->zeromod;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->pair->slots[0]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x03:
channel->pair->slots[0]->mod = &channel->pair->slots[0]->fbmod;
channel->pair->slots[1]->mod = &channel->chip->zeromod;
channel->slots[0]->mod = &channel->pair->slots[1]->out;
channel->slots[1]->mod = &channel->chip->zeromod;
channel->out[0] = &channel->pair->slots[0]->out;
channel->out[1] = &channel->slots[0]->out;
channel->out[2] = &channel->slots[1]->out;
channel->out[3] = &channel->chip->zeromod;
break;
}
}
else
{
switch (channel->alg & 0x01)
{
case 0x00:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->slots[0]->out;
channel->out[0] = &channel->slots[1]->out;
channel->out[1] = &channel->chip->zeromod;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
case 0x01:
channel->slots[0]->mod = &channel->slots[0]->fbmod;
channel->slots[1]->mod = &channel->chip->zeromod;
channel->out[0] = &channel->slots[0]->out;
channel->out[1] = &channel->slots[1]->out;
channel->out[2] = &channel->chip->zeromod;
channel->out[3] = &channel->chip->zeromod;
break;
}
}
}
static void OPL3_ChannelUpdateAlg(opl3_channel *channel)
{
channel->alg = channel->con;
if (channel->chip->newm)
{
if (channel->chtype == ch_4op)
{
channel->pair->alg = 0x04 | (channel->con << 1) | (channel->pair->con);
channel->alg = 0x08;
OPL3_ChannelSetupAlg(channel->pair);
}
else if (channel->chtype == ch_4op2)
{
channel->alg = 0x04 | (channel->pair->con << 1) | (channel->con);
channel->pair->alg = 0x08;
OPL3_ChannelSetupAlg(channel);
}
else
{
OPL3_ChannelSetupAlg(channel);
}
}
else
{
OPL3_ChannelSetupAlg(channel);
}
}
static void OPL3_ChannelWriteC0(opl3_channel *channel, uint8_t data)
{
channel->fb = (data & 0x0e) >> 1;
channel->con = data & 0x01;
OPL3_ChannelUpdateAlg(channel);
if (channel->chip->newm)
{
channel->cha = ((data >> 4) & 0x01) ? ~0 : 0;
channel->chb = ((data >> 5) & 0x01) ? ~0 : 0;
channel->chc = ((data >> 6) & 0x01) ? ~0 : 0;
channel->chd = ((data >> 7) & 0x01) ? ~0 : 0;
}
else
{
channel->cha = channel->chb = (uint16_t)~0;
// TODO: Verify on real chip if DAC2 output is disabled in compat mode
channel->chc = channel->chd = 0;
}
#if OPL_ENABLE_STEREOEXT
if (!channel->chip->stereoext)
{
channel->leftpan = channel->cha << 16;
channel->rightpan = channel->chb << 16;
}
#endif
}
#if OPL_ENABLE_STEREOEXT
static void OPL3_ChannelWriteD0(opl3_channel* channel, uint8_t data)
{
if (channel->chip->stereoext)
{
channel->leftpan = panpot_lut[data ^ 0xff];
channel->rightpan = panpot_lut[data];
}
}
#endif
static void OPL3_ChannelKeyOn(opl3_channel *channel)
{
if (channel->chip->newm)
{
if (channel->chtype == ch_4op)
{
OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm);
OPL3_EnvelopeKeyOn(channel->pair->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->pair->slots[1], egk_norm);
}
else if (channel->chtype == ch_2op || channel->chtype == ch_drum)
{
OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm);
}
}
else
{
OPL3_EnvelopeKeyOn(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOn(channel->slots[1], egk_norm);
}
}
static void OPL3_ChannelKeyOff(opl3_channel *channel)
{
if (channel->chip->newm)
{
if (channel->chtype == ch_4op)
{
OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm);
OPL3_EnvelopeKeyOff(channel->pair->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->pair->slots[1], egk_norm);
}
else if (channel->chtype == ch_2op || channel->chtype == ch_drum)
{
OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm);
}
}
else
{
OPL3_EnvelopeKeyOff(channel->slots[0], egk_norm);
OPL3_EnvelopeKeyOff(channel->slots[1], egk_norm);
}
}
static void OPL3_ChannelSet4Op(opl3_chip *chip, uint8_t data)
{
uint8_t bit;
uint8_t chnum;
for (bit = 0; bit < 6; bit++)
{
chnum = bit;
if (bit >= 3)
{
chnum += 9 - 3;
}
if ((data >> bit) & 0x01)
{
chip->channel[chnum].chtype = ch_4op;
chip->channel[chnum + 3].chtype = ch_4op2;
OPL3_ChannelUpdateAlg(&chip->channel[chnum]);
}
else
{
chip->channel[chnum].chtype = ch_2op;
chip->channel[chnum + 3].chtype = ch_2op;
OPL3_ChannelUpdateAlg(&chip->channel[chnum]);
OPL3_ChannelUpdateAlg(&chip->channel[chnum+3]);
}
}
}
static int16_t OPL3_ClipSample(int32_t sample)
{
if (sample > 32767)
{
sample = 32767;
}
else if (sample < -32768)
{
sample = -32768;
}
return (int16_t)sample;
}
static void OPL3_ProcessSlot(opl3_slot *slot)
{
OPL3_SlotCalcFB(slot);
OPL3_EnvelopeCalc(slot);
OPL3_PhaseGenerate(slot);
OPL3_SlotGenerate(slot);
}
inline void OPL3_Generate4Ch(opl3_chip *chip, int16_t *buf4)
{
opl3_channel *channel;
opl3_writebuf *writebuf;
int16_t **out;
int32_t mix[2];
uint8_t ii;
int16_t accm;
uint8_t shift = 0;
buf4[1] = OPL3_ClipSample(chip->mixbuff[1]);
buf4[3] = OPL3_ClipSample(chip->mixbuff[3]);
#if OPL_QUIRK_CHANNELSAMPLEDELAY
for (ii = 0; ii < 15; ii++)
#else
for (ii = 0; ii < 36; ii++)
#endif
{
OPL3_ProcessSlot(&chip->slot[ii]);
}
mix[0] = mix[1] = 0;
for (ii = 0; ii < 18; ii++)
{
channel = &chip->channel[ii];
out = channel->out;
accm = *out[0] + *out[1] + *out[2] + *out[3];
#if OPL_ENABLE_STEREOEXT
mix[0] += (int16_t)((accm * channel->leftpan) >> 16);
#else
mix[0] += (int16_t)(accm & channel->cha);
#endif
mix[1] += (int16_t)(accm & channel->chc);
}
chip->mixbuff[0] = mix[0];
chip->mixbuff[2] = mix[1];
#if OPL_QUIRK_CHANNELSAMPLEDELAY
for (ii = 15; ii < 18; ii++)
{
OPL3_ProcessSlot(&chip->slot[ii]);
}
#endif
buf4[0] = OPL3_ClipSample(chip->mixbuff[0]);
buf4[2] = OPL3_ClipSample(chip->mixbuff[2]);
#if OPL_QUIRK_CHANNELSAMPLEDELAY
for (ii = 18; ii < 33; ii++)
{
OPL3_ProcessSlot(&chip->slot[ii]);
}
#endif
mix[0] = mix[1] = 0;
for (ii = 0; ii < 18; ii++)
{
channel = &chip->channel[ii];
out = channel->out;
accm = *out[0] + *out[1] + *out[2] + *out[3];
#if OPL_ENABLE_STEREOEXT
mix[0] += (int16_t)((accm * channel->rightpan) >> 16);
#else
mix[0] += (int16_t)(accm & channel->chb);
#endif
mix[1] += (int16_t)(accm & channel->chd);
}
chip->mixbuff[1] = mix[0];
chip->mixbuff[3] = mix[1];
#if OPL_QUIRK_CHANNELSAMPLEDELAY
for (ii = 33; ii < 36; ii++)
{
OPL3_ProcessSlot(&chip->slot[ii]);
}
#endif
if ((chip->timer & 0x3f) == 0x3f)
{
chip->tremolopos = (chip->tremolopos + 1) % 210;
}
if (chip->tremolopos < 105)
{
chip->tremolo = chip->tremolopos >> chip->tremoloshift;
}
else
{
chip->tremolo = (210 - chip->tremolopos) >> chip->tremoloshift;
}
if ((chip->timer & 0x3ff) == 0x3ff)
{
chip->vibpos = (chip->vibpos + 1) & 7;
}
chip->timer++;
chip->eg_add = 0;
if (chip->eg_timer)
{
while (shift < 36 && ((chip->eg_timer >> shift) & 1) == 0)
{
shift++;
}
if (shift > 12)
{
chip->eg_add = 0;
}
else
{
chip->eg_add = shift + 1;
}
}
if (chip->eg_timerrem || chip->eg_state)
{
if (chip->eg_timer == 0xfffffffff)
{
chip->eg_timer = 0;
chip->eg_timerrem = 1;
}
else
{
chip->eg_timer++;
chip->eg_timerrem = 0;
}
}
chip->eg_state ^= 1;
while ((writebuf = &chip->writebuf[chip->writebuf_cur]), writebuf->time <= chip->writebuf_samplecnt)
{
if (!(writebuf->reg & 0x200))
{
break;
}
writebuf->reg &= 0x1ff;
OPL3_WriteReg(chip, writebuf->reg, writebuf->data);
chip->writebuf_cur = (chip->writebuf_cur + 1) % OPL_WRITEBUF_SIZE;
}
chip->writebuf_samplecnt++;
}
void OPL3_Generate(opl3_chip *chip, int16_t *buf)
{
int16_t samples[4];
OPL3_Generate4Ch(chip, samples);
buf[0] = samples[0];
buf[1] = samples[1];
}
void OPL3_Generate4ChResampled(opl3_chip *chip, int16_t *buf4)
{
while (chip->samplecnt >= chip->rateratio)
{
chip->oldsamples[0] = chip->samples[0];
chip->oldsamples[1] = chip->samples[1];
chip->oldsamples[2] = chip->samples[2];
chip->oldsamples[3] = chip->samples[3];
OPL3_Generate4Ch(chip, chip->samples);
chip->samplecnt -= chip->rateratio;
}
buf4[0] = (int16_t)((chip->oldsamples[0] * (chip->rateratio - chip->samplecnt)
+ chip->samples[0] * chip->samplecnt) / chip->rateratio);
buf4[1] = (int16_t)((chip->oldsamples[1] * (chip->rateratio - chip->samplecnt)
+ chip->samples[1] * chip->samplecnt) / chip->rateratio);
buf4[2] = (int16_t)((chip->oldsamples[2] * (chip->rateratio - chip->samplecnt)
+ chip->samples[2] * chip->samplecnt) / chip->rateratio);
buf4[3] = (int16_t)((chip->oldsamples[3] * (chip->rateratio - chip->samplecnt)
+ chip->samples[3] * chip->samplecnt) / chip->rateratio);
chip->samplecnt += 1 << RSM_FRAC;
}
void OPL3_GenerateResampled(opl3_chip *chip, int16_t *buf)
{
int16_t samples[4];
OPL3_Generate4ChResampled(chip, samples);
buf[0] = samples[0];
buf[1] = samples[1];
}
void OPL3_Reset(opl3_chip *chip, uint32_t samplerate)
{
opl3_slot *slot;
opl3_channel *channel;
uint8_t slotnum;
uint8_t channum;
uint8_t local_ch_slot;
memset(chip, 0, sizeof(opl3_chip));
for (slotnum = 0; slotnum < 36; slotnum++)
{
slot = &chip->slot[slotnum];
slot->chip = chip;
slot->mod = &chip->zeromod;
slot->eg_rout = 0x1ff;
slot->eg_out = 0x1ff;
slot->eg_gen = envelope_gen_num_release;
slot->trem = (uint8_t*)&chip->zeromod;
slot->slot_num = slotnum;
}
for (channum = 0; channum < 18; channum++)
{
channel = &chip->channel[channum];
local_ch_slot = ch_slot[channum];
channel->slots[0] = &chip->slot[local_ch_slot];
channel->slots[1] = &chip->slot[local_ch_slot + 3];
chip->slot[local_ch_slot].channel = channel;
chip->slot[local_ch_slot + 3].channel = channel;
if ((channum % 9) < 3)
{
channel->pair = &chip->channel[channum + 3];
}
else if ((channum % 9) < 6)
{
channel->pair = &chip->channel[channum - 3];
}
channel->chip = chip;
channel->out[0] = &chip->zeromod;
channel->out[1] = &chip->zeromod;
channel->out[2] = &chip->zeromod;
channel->out[3] = &chip->zeromod;
channel->chtype = ch_2op;
channel->cha = 0xffff;
channel->chb = 0xffff;
#if OPL_ENABLE_STEREOEXT
channel->leftpan = 0x10000;
channel->rightpan = 0x10000;
#endif
channel->ch_num = channum;
OPL3_ChannelSetupAlg(channel);
}
chip->noise = 1;
chip->rateratio = (samplerate << RSM_FRAC) / 49716;
chip->tremoloshift = 4;
chip->vibshift = 1;
#if OPL_ENABLE_STEREOEXT
if (!panpot_lut_build)
{
int32_t i;
for (i = 0; i < 256; i++)
{
panpot_lut[i] = OPL_SIN(i);
}
panpot_lut_build = 1;
}
#endif
}
void OPL3_WriteReg(opl3_chip *chip, uint16_t reg, uint8_t v)
{
uint8_t high = (reg >> 8) & 0x01;
uint8_t regm = reg & 0xff;
switch (regm & 0xf0)
{
case 0x00:
if (high)
{
switch (regm & 0x0f)
{
case 0x04:
OPL3_ChannelSet4Op(chip, v);
break;
case 0x05:
chip->newm = v & 0x01;
#if OPL_ENABLE_STEREOEXT
chip->stereoext = (v >> 1) & 0x01;
#endif
break;
}
}
else
{
switch (regm & 0x0f)
{
case 0x08:
chip->nts = (v >> 6) & 0x01;
break;
}
}
break;
case 0x20:
case 0x30:
if (ad_slot[regm & 0x1f] >= 0)
{
OPL3_SlotWrite20(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x40:
case 0x50:
if (ad_slot[regm & 0x1f] >= 0)
{
OPL3_SlotWrite40(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x60:
case 0x70:
if (ad_slot[regm & 0x1f] >= 0)
{
OPL3_SlotWrite60(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0x80:
case 0x90:
if (ad_slot[regm & 0x1f] >= 0)
{
OPL3_SlotWrite80(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0xe0:
case 0xf0:
if (ad_slot[regm & 0x1f] >= 0)
{
OPL3_SlotWriteE0(&chip->slot[18 * high + ad_slot[regm & 0x1f]], v);
}
break;
case 0xa0:
if ((regm & 0x0f) < 9)
{
OPL3_ChannelWriteA0(&chip->channel[9 * high + (regm & 0x0f)], v);
}
break;
case 0xb0:
if (regm == 0xbd && !high)
{
chip->tremoloshift = (((v >> 7) ^ 1) << 1) + 2;
chip->vibshift = ((v >> 6) & 0x01) ^ 1;
OPL3_ChannelUpdateRhythm(chip, v);
}
else if ((regm & 0x0f) < 9)
{
OPL3_ChannelWriteB0(&chip->channel[9 * high + (regm & 0x0f)], v);
if (v & 0x20)
{
OPL3_ChannelKeyOn(&chip->channel[9 * high + (regm & 0x0f)]);
}
else
{
OPL3_ChannelKeyOff(&chip->channel[9 * high + (regm & 0x0f)]);
}
}
break;
case 0xc0:
if ((regm & 0x0f) < 9)
{
OPL3_ChannelWriteC0(&chip->channel[9 * high + (regm & 0x0f)], v);
}
break;
#if OPL_ENABLE_STEREOEXT
case 0xd0:
if ((regm & 0x0f) < 9)
{
OPL3_ChannelWriteD0(&chip->channel[9 * high + (regm & 0x0f)], v);
}
break;
#endif
}
}
void OPL3_WriteRegBuffered(opl3_chip *chip, uint16_t reg, uint8_t v)
{
uint64_t time1, time2;
opl3_writebuf *writebuf;
uint32_t writebuf_last;
writebuf_last = chip->writebuf_last;
writebuf = &chip->writebuf[writebuf_last];
if (writebuf->reg & 0x200)
{
OPL3_WriteReg(chip, writebuf->reg & 0x1ff, writebuf->data);
chip->writebuf_cur = (writebuf_last + 1) % OPL_WRITEBUF_SIZE;
chip->writebuf_samplecnt = writebuf->time;
}
writebuf->reg = reg | 0x200;
writebuf->data = v;
time1 = chip->writebuf_lasttime + OPL_WRITEBUF_DELAY;
time2 = chip->writebuf_samplecnt;
if (time1 < time2)
{
time1 = time2;
}
writebuf->time = time1;
chip->writebuf_lasttime = time1;
chip->writebuf_last = (writebuf_last + 1) % OPL_WRITEBUF_SIZE;
}
void OPL3_Generate4ChStream(opl3_chip *chip, int16_t *sndptr1, int16_t *sndptr2, uint32_t numsamples)
{
uint_fast32_t i;
int16_t samples[4];
for(i = 0; i < numsamples; i++)
{
OPL3_Generate4ChResampled(chip, samples);
sndptr1[0] = samples[0];
sndptr1[1] = samples[1];
sndptr2[0] = samples[2];
sndptr2[1] = samples[3];
sndptr1 += 2;
sndptr2 += 2;
}
}
void OPL3_GenerateStream(opl3_chip *chip, int16_t *sndptr, uint32_t numsamples)
{
uint_fast32_t i;
for(i = 0; i < numsamples; i++)
{
OPL3_GenerateResampled(chip, sndptr);
sndptr += 2;
}
}