; ; Speed-optimized ApLib decompressor by spke & uniabis (ver.06 01-05/06/2020, 235 bytes) ; ; The original Z80 decompressors for ApLib were written by Dan Weiss (Dwedit), ; then tweaked by Francisco Javier Pena Pareja (utopian), ; and optimized by Jaime Tejedor Gomez (Metalbrain) and Antonio Villena. ; ; This is a new "implicit state" decompressor heavily optimized for speed by spke. ; (It is 12 bytes shorter and 18% faster than the previously fastest ; 247b decompressor by Metalbrain and Antonio Villena.) ; ; ver.00 by spke (21/08/2018-01/09/2018, 244 bytes, an edit of the existing 247b decompressor); ; ver.01 by spke (12-13/11/2018, 234(-10) bytes, +3% speed using the state machine for LWM); ; ver.02 by spke (06/08/2019, +1% speed); ; ver.03 by spke (27/08/2019, 236(+2) bytes, +1% speed using partly expanded LDIR); ; ver.04 by spke (spring 2020, added full revision history and support for long offsets) ; ver.05 by spke (17-31/05/2020, 230(-6) bytes, +3% speed, added support for backward compression) <- BROKEN, DO NOT USE ; ver.06 by uniabis & spke (01-07/06/2020, 235(+5) bytes, +1% speed, added support for HD64180) ; ; The data must be compressed using any compressor for ApLib capable of generating raw data. ; At present, two best available compressors are: ; ; "APC" by Sven-Ake Dahl: https://github.com/svendahl/cap or ; "apultra" by Emmanuel Marty: https://github.com/emmanuel-marty/apultra ; ; The compression can done as follows: ; ; apc.exe e ; or ; apultra.exe ; ; A decent compressor was written by r57shell (although it is worse than compressors above): ; http://gendev.spritesmind.net/forum/viewtopic.php?p=32548#p32548 ; The use of the official ApLib compressor by Joergen Ibsen is not recommended. ; ; The decompression is done in the standard way: ; ; ld hl,FirstByteOfCompressedData ; ld de,FirstByteOfMemoryForDecompressedData ; call DecompressApLib ; ; Backward decompression is also supported; you can compress files backward using: ; ; apultra.exe -b ; ; uncomment option "DEFINE BackwardDecompression" and decompress the resulting files using: ; ; ld hl,LastByteOfCompressedData ; ld de,LastByteOfMemoryForDecompressedData ; call DecompressApLib ; ; The decompressor modifies AF, AF', BC, DE, HL, IX. ; ; Of course, ApLib compression algorithms are (c) 1998-2014 Joergen Ibsen, ; see http://www.ibsensoftware.com/ for more information ; ; Drop me an email if you have any comments/ideas/suggestions: zxintrospec@gmail.com ; ; This software is provided 'as-is', without any express or implied ; warranty. In no event will the authors be held liable for any damages ; arising from the use of this software. ; ; Permission is granted to anyone to use this software for any purpose, ; including commercial applications, and to alter it and redistribute it ; freely, subject to the following restrictions: ; ; 1. The origin of this software must not be misrepresented; you must not ; claim that you wrote the original software. If you use this software ; in a product, an acknowledgment in the product documentation would be ; appreciated but is not required. ; 2. Altered source versions must be plainly marked as such, and must not be ; misrepresented as being the original software. ; 3. This notice may not be removed or altered from any source distribution. ; DEFINE SupportLongOffsets ; +4 bytes for long offset support. slows decompression down by 1%, but may be needed to decompress files >=32K ; DEFINE BackwardDecompression ; decompress data compressed backwards, -10 bytes, speeds decompression up by 3% ; DEFINE HD64180 ; -2 bytes for HD64180/Z180 support, slows decompression down by 1% IFNDEF BackwardDecompression MACRO NEXT_HL inc hl ENDM MACRO COPY_1 ldi ENDM MACRO COPY_BC ldir ENDM ELSE MACRO NEXT_HL dec hl ENDM MACRO COPY_1 ldd ENDM MACRO COPY_BC lddr ENDM ENDIF MACRO RELOAD_A ld a,(hl) : NEXT_HL : rla ENDM @Decompress: COPY_1 : scf ;================================================================================================================== ;================================================================================================================== ;================================================================================================================== LWM0: ;LWM = 0 (LWM stands for "Last Was Match"; a flag that we did not have a match) .ReloadByteC0 RELOAD_A : jr c,.Check2ndBit ; ; case "0"+BYTE: copy a single literal .CASE0: COPY_1 ; first byte is always copied as literal ; ; main decompressor loop .MainLoop: add a : jr nc,.CASE0 : jr z,.ReloadByteC0 ; "0"+BYTE = copy literal .Check2ndBit add a : jr nc,.CASE10 : jr z,.ReloadByteC1 ; "10"+gamma(offset/256)+BYTE+gamma(length) = the main matching mechanism .Check3rdBit add a : call z,ReloadByte : jp c,LWM1.CASE111 ; "110"+[oooooool] = matched 2-3 bytes with a small offset ; ; branch "110"+[oooooool]: copy two or three bytes (bit "l") with the offset -1..-127 (bits "ooooooo"), or stop .CASE110: ; "use 7 bit offset, length = 2 or 3" ; "if a zero is found here, it's EOF" ld c,(hl) : rr c : ret z ; process EOF NEXT_HL ld b,0 IFNDEF HD64180 ld ixl,c : ld ixh,b ; save offset for future LWMs ELSE push bc : pop ix ENDIF push hl ; save src ld h,d : ld l,e ; HL = dest jr c,.LengthIs3 .LengthIs2 IFNDEF BackwardDecompression sbc hl,bc ELSE add hl,bc ENDIF COPY_1 : COPY_1 jr .PreMainLoop .LengthIs3 IFNDEF BackwardDecompression or a : sbc hl,bc ELSE add hl,bc ENDIF COPY_1 : COPY_1 : COPY_1 jr .PreMainLoop .ReloadByteC1 RELOAD_A : jr c,.Check3rdBit ; ; branch "10"+gamma(offset/256)+BYTE+gamma(length): the main matching mechanism .CASE10: ; "use a gamma code * 256 for offset, another gamma code for length" call GetGammaCoded ; the original decompressor contains ; ; if ((LWM == 0) && (offs == 2)) { ... } ; else { ; if (LWM == 0) { offs -= 3; } ; else { offs -= 2; } ; } ; ; so, the idea here is to use the fact that GetGammaCoded returns (offset/256)+2, ; and to split the first condition by noticing that C-1 can never be zero dec c : dec c : jr z,LWM1.KickInLWM .AfterLWM dec c : ld b,c : ld c,(hl) : NEXT_HL ; BC = offset IFNDEF HD64180 ld ixl,c : ld ixh,b : push bc ELSE push bc : push bc : pop ix ENDIF call GetGammaCoded ; BC = len* ex (sp),hl ; interpretation of length value is offset-dependent: ; if (offs >= 32000) len++; if (offs >= 1280) len++; if (offs < 128) len+=2; ; in other words, ; (1 <= offs < 128) +=2 ; (128 <= offs < 1280) +=0 ; (1280 <= offs < 31999) +=1 ; NB offsets over 32000 need one more check, but other Z80 decompressors seem to ignore it. is it not needed? ; interpretation of length value is offset-dependent exa : ld a,h IFDEF SupportLongOffsets ; NB offsets over 32000 require an additional check, which is skipped in most ; Z80 decompressors (seemingly as a performance optimization) cp 32000/256 : jr nc,.Add2 ENDIF cp 5 : jr nc,.Add1 or a : jr nz,.Add0 bit 7,l : jr nz,.Add0 .Add2 inc bc .Add1 inc bc .Add0 ; for offs<128 : 4+4+7+7 + 4+7 + 8+7 + 6+6 = 60t ; for offs>=1280 : 4+4+7+12 + 6 = 33t ; for 128<=offs<1280 : 4+4+7+7 + 4+12 = 38t OR 4+4+7+7 + 4+7+8+12 = 53t .CopyMatch: ; this assumes that BC = len, DE = dest, HL = offset ; and also that (SP) = src, while having NC IFNDEF BackwardDecompression ld a,e : sub l : ld l,a ld a,d : sbc h ld h,a : exa ELSE exa .CopyMatchLDH add hl,de ENDIF COPY_1 : COPY_BC .PreMainLoop pop hl ; recover src ;================================================================================================================== ;================================================================================================================== ;================================================================================================================== LWM1: ; LWM = 1 ; ; main decompressor loop .MainLoop: add a : jr nc,LWM0.CASE0 : jr z,.ReloadByteC0 ; "0"+BYTE = copy literal .Check2ndBit add a : jr nc,.CASE10 : jr z,.ReloadByteC1 ; "10"+gamma(offset/256)+BYTE+gamma(length) = the main matching mechanism .Check3rdBit add a : call z,ReloadByte : jr nc,LWM0.CASE110 ; "110"+[oooooool] = matched 2-3 bytes with a small offset ; ; case "111"+"oooo": copy a byte with offset -1..-15, or write zero to dest .CASE111: ld bc,%11100000 DUP 4 add a : call z,ReloadByte : rl c ; read short offset (4 bits) EDUP ex de,hl : jr z,.WriteZero ; zero offset means "write zero" (NB: B is zero here) ; "write a previous byte (1-15 away from dest)" push hl ; BC = offset, DE = src, HL = dest IFNDEF BackwardDecompression sbc hl,bc ; HL = dest-offset (SBC works because branching above ensured NC) ELSE add hl,bc ENDIF ld c,(hl) pop hl .WriteZero ld (hl),c : NEXT_HL ex de,hl : jp LWM0.MainLoop ; 10+4*(4+10+8)+4+7 + 11+15+7+10 + 7+4+6+10 = 179t .ReloadByteC0 RELOAD_A : jp nc,LWM0.CASE0 jr .Check2ndBit .ReloadByteC1 RELOAD_A : jr c,.Check3rdBit ; ; branch "10"+gamma(offset/256)+BYTE+gamma(length): the main matching mechanism .CASE10: ; "use a gamma code * 256 for offset, another gamma code for length" call GetGammaCoded ; the original decompressor contains ; ; if ((LWM == 0) && (offs == 2)) { ... } ; else { ; if (LWM == 0) { offs -= 3; } ; else { offs -= 2; } ; } ; ; so, the idea here is to use the fact that GetGammaCoded returns (offset/256)+2, ; and to split the first condition by noticing that C-1 can never be zero dec c : jr LWM0.AfterLWM ; ; the re-use of the previous offset (LWM magic) .KickInLWM: ; "and a new gamma code for length" inc c : call GetGammaCoded.ReadGamma ; BC = len IFNDEF BackwardDecompression push ix : ex (sp),hl : exa jr LWM0.CopyMatch ELSE push ix : ex (sp),hl jr LWM0.CopyMatchLDH ENDIF ;================================================================================================================== ;================================================================================================================== ;================================================================================================================== ; ; interlaced gamma code reader ; x0 -> 1x ; x1y0 -> 1xy ; x1y1z0 -> 1xyz etc ; (technically, this is a 2-based variation of Exp-Golomb-1) GetGammaCoded: ld bc,1 .ReadGamma add a : jr z,.ReloadByteRG1 rl c : rl b add a : ret nc ; NB: flag NC immediately says we do not need to reload our byte... jr nz,.ReadGamma ; ...even better, flag NZ then automatically means flag C :) .ReloadByteRG2 RELOAD_A : ret nc : jr .ReadGamma .ReloadByteRG1 RELOAD_A : rl c : rl b add a : ret nc : jr .ReadGamma ; ; pretty usual getbit for mixed datastreams ReloadByte: RELOAD_A : ret